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Abstract

The purpose of this work is to present a computer assisted diagnostic tool for radiologists in

their diagnosis of Alzheimer’s disease. A statistical likelihood-ratio procedure from signal

detection theory was implemented in the detection of Alzheimer’s disease. The probability

density functions of the likelihood ratio were constructed by using medial temporal lobe

(MTL) volumes of patients with Alzheimer’s disease (AD) and normal controls (NC). The vol-

umes of MTL as well as other anatomical regions of the brains were calculated by the Free-

Surfer software using T1 weighted MRI images. The MRI images of AD and NC were

downloaded from the database of Alzheimer’s disease neuroimaging initiative (ADNI). A

separate dataset of minimal interval resonance imaging in Alzheimer’s disease (MIRIAD)

was used for diagnostic testing. A sensitivity of 89.1% and specificity of 87.0% were

achieved for the MIRIAD dataset which are better than the 85% sensitivity and specificity

achieved by the best radiologists without input of other patient information.

Introduction

Alzheimer’s disease is the most common cause of dementia affecting ageing population in the

world [1]. MRI T1 weighted structural images are recommended [2] and integrated [3] in rou-

tine diagnosis of Alzheimer’s disease (AD). The medial temporal lobe atrophy (MTA) is the

hall mark of AD in MRI images [4,5]. Radiologists use a coronal section of the T1 weighted

MRI images to rate patients’ MTA using a 5 points visual grading scale, based on the height of

the hippocampal formation, the widths of the choroid fissure and the temporal horn [4–6]. A

score of 3 or above is considered abnormal [4–6]. A diagnostic sensitivity and specificity of

85% can be achieved by the best radiologists using visual scale grading [6] without using the

patients’ other information.

The hippocampus is the mostly affected region among the sub-regions of the medial tempo-

ral lobe [4]. Hippocampal atrophy is one of the core biomarkers in the revised National Insti-

tute on Aging-Alzheimer’s Association (NIA-AA) diagnostic criteria for AD [7]. In addition to

the atrophy of the hippocampal volume, the asymmetry of the left and right hemispheres as

well as shapes and forms of the hippocampus are also of great importance [8–10], because
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differences of these characteristics between AD and normal controls (NC) may point to the

origin and staging of the Alzheimer’s disease [11,12]. Such differences may suggest potential

targets for therapeutic drugs or directions for any drug development [13,14]. Subfields of the

hippocampus have also been investigated in recent years [15].

Many machine learning (ML) algorithms have been developed and studied to assist radiolo-

gists’ diagnosis of Alzheimer’s disease using structural MRI images [16,17] including advanced

deep machine learning algorithms [18,19]. The diagnostic accuracies of these algorithms are

similar to that achieved by radiologists using visual scale rating, i.e. between 80–90% [16,17],

or, up to 98.8% if additional information is included [18,19] for distinguishing AD from NC.

These computers assisted algorithms are yet to be implemented in clinical practice, particu-

larly, in non-research healthcare settings such as those clinics in regional and remote areas.

Clinical radiologists/physicians or healthcare professionals would like to have simple yet accu-

rate tools to assist them in their day-to-day patient care and management. The purpose of this

work is to develop a simple computer assisted diagnostic tool in detecting Alzheimer’s disease

using an MRI T1 weighted image without the need for knowing any other information of a

patient. This is intended to be a convenient and effective tool for assisting radiologists and phy-

sicians as well as healthcare professionals such as radiographers or nurses who are caring aging

populations in regional and remote areas.

Methods and materials

Radiologists make diagnostic decisions based on their probability knowledge of normal vs dis-

eased images which were developed during their specialist training [20]. The decision thresh-

old of a human observer can be biased in their decision making and an ideal observer makes

decisions by placing a criterion on the axis of an underlying random variable [21]. The statisti-

cal likelihood-ratio test of an ideal observer uses the probability density functions of normal vs

diseased images in its decision making [21]:

LðNÞ ¼ fnðxÞ ð1Þ

and

LðDÞ ¼ fdðxÞ ð2Þ

Where fn(x) and fd(x) are the probability density functions of normal (N) and diseased (D).

For a decision variable x, the likelihood ratio observer uses the probability ratio of the normal

and diseased or log-likelihood ratio to make decisions:

y ¼ logR D : Nð Þ ¼ log
f ðxÞd
f ðxÞn

¼ logfd xð Þ � logfn xð Þ ð3Þ

Where y>0 is considered to be diseased and y<0 is considered to be normal.

The probability density functions of normal and the diseased can be constructed by using

clinical data of pathologically confirmed diseased and normal patients. If the patients are ran-

domly drawn from a population, the probability density functions fn(x) and fd(x) can be con-

sidered as normal or Gaussian distributions:

fn xð Þ ¼
1

ð2psn
2Þ

1=
2
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And

fd xð Þ ¼
1
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2Þ
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2
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1

2
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sd
2

2� �

ð5Þ

Where σn and σd are the standard deviations of normal and diseased and μn and μd are the

mean values of the normal and diseased. The probability density distributions of the normal

and diseased can be constructed by using their mean values and standard deviations. On the

other hand, if the patients’ data are not normally distributed, the probability density functions

of the normal and diseased can be constructed by using freely available statistical package R

[22] on the actual data of the patients.

In this work, the probability density distributions of Alzheimer’s patients and normal con-

trols are constructed by using patients’ MRI T1 weighted images which were downloaded

from the database of Alzheimer’s disease neuroimaging initiative (ADNI) [23]. All MRI images

used in this work are in public domain and the accesses of these databases were approved by

the database owners and their respective institutions. As such: (1). the institutional ethics

approval was exempted by Charles Sturt University’s Ethics Committee; (2). methods

employed in this study are in accordance with the guidelines of Charles Sturt University’s Eth-

ics Committee; and (3). informed consent was obtained prior to data collections by the respec-

tive database owners. The ADNI data was collected according to good clinical practice

guidelines, US21CFR part 50 –protection of human subjects and part 56 –institutional review

boards/ research ethics boards (REBs), and pursuant to state and federal HIPA regulations

[23]. The ADNI was launched in 2003 as a public-private partnership, led by Principal Investi-

gator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial mag-

netic resonance imaging (MRI), positron emission tomography (PET), other biological

markers, and clinical and neuropsychological assessment can be combined to measure the pro-

gression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For multiple

images of the same AD or NC patients, we only downloaded one T1 weighted MRI image of

each patient for the reason of randomness in constructing our probability density functions.

Repeated images of a patient are correlated and their inclusions may increase the numbers of

images but reduce the randomness for statistical analysis. A total 526 individual patients’ T1

weighted MRI images (263 AD and 263 NC with randomly mixed gender and ages from 55 to

97 years) were used for the constructions of probability density functions in this study.

Patients’ hippocampus volumes as well as volumes of other anatomical regions of the brains

including sub-regions of the medial temporal lobe were calculated by using the “FreeSurfer”

software [24]. FreeSurfer is a software package for the analysis and visualization of structural

and functional neuroimaging data from cross-sectional or longitudinal studies. It is developed

by the Laboratory for Computational Neuroimaging at the Athinoula A. Martinos Centrer for

Biomedical Imaging. It is freely available for public use. As shown in Fig 1, the Freesurfer soft-

ware divides the brain into left and right hemispheres for various anatomical regions. The

medial temporal lobe is segmented into hippocampus, entorhinal, amygdala and para-hippo-

campal subregions [24]. All T1 weighted MRI images of AD and NC patients were processed

by using SPAN computing facility at Charles Sturt University and the National Computational

Infrastructure (NCI) of Australia at Canberra. A dataset of Minimal Interval Resonance Imag-

ing in Alzheimer’s disease (MIRIAD) [25] was used for the diagnostic testing. The MIRIAD

study was approved by the research ethics committee and written consent was obtained prior

to the data collection [26]. The MIRIAD data set consists of a series of T1 weighted MRI

images for each of the 46 AD and 23 NC patients. Again, we used one image from each of the

69 individual patients for the reason of randomness. The SPSS statistical package version 25
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[27] was used to calculate the area under the curve, Az, or the detectability index, for the joint

probability density distributions of normal vs Alzheimer’s disease.

Results and discussion

Table 1 shows the averaged volumes of left and right hippocampus for both NC and AD

patients. The averaged left hippocampal volume is smaller than that of right hippocampus for

both AD (97.3 mm3) and NC (116.5 mm3) subjects. The left/right asymmetry of the hippocam-

pal volumes are 3.26% for AD and 3.20% for NC. There is no statistically significant difference

in volumetric asymmetry between AD and NC and no evidence to suggest that the neural

degeneration of hippocampus is more or started at the left hand side [11]. Both left and right

hand side hippocampal volumes of AD patients are reduced by a similar amount from that of

the NC patients (left by 629.5 mm3 or 19.4% and right by 648.7 mm3, or 19.3%).

Fig 2 shows the areas under the ROC curves, Az, or detectability index for the detection of

AD by using left and right as well as total hippocampal volumes. The Az equals to 0.814, 0.819

and 0.826 for using left, right and total hippocampal volumes, respectively. The Az values

show that using total volumes of hippocampus performed better than that of using either right

or left, and using right hippocampal volumes performed better than that of using the left hip-

pocampus. This might be because the averaged right hippocampal volume is slightly larger

(3.23%) than that of the left hippocampus.

Fig 1. Coronal T1 weighted MRI images of (a) Alzheimer’s patient ID-201 and (b) normal patient ID-200 of the

MIRIAD dataset. The FreeSurfer software divides the brain into left and right hemispheres and segments the medial

temporal lobe into hippocampus, entorhinal, amygdala and para-hippocampal subregions.

https://doi.org/10.1371/journal.pone.0279574.g001

Table 1. Left and right hippocampus volumes of normal controls (NC) and Alzheimer’s diseases (AD).

AD NC

Left Right Left Right

Mean Volume (mm3) ± SD 2933.4±540.1 3030.7±539.7 3562.9±431.1 3679.4±476.1

Mean Volume (mm3) Diff ± SD -97.3±343.0 -116.5±259.2

Percentage Differences 3.26% 3.20%

Correlation (Sig.) 0.798 (0.000) 0.841 (0.000)

https://doi.org/10.1371/journal.pone.0279574.t001
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Fig 3 shows the probability density functions of the AD and NC constructed by using the

total mean volumes of the hippocampus assuming a Gaussian distribution of Eqs (4 and 5).

The total mean volumes of the hippocampus are 5962.1±1025.3 and 7238.4±870.0 mm3 for

Fig 2. The ROC curves and their areas under the ROC curves of the left, right and total hippocampal volumes for

the detection of Alzheimer’s disease.

https://doi.org/10.1371/journal.pone.0279574.g002

Fig 3. Probability density distributions of total volumes of the hippocampus: Normal controls (NC) vs

Alzheimer’s disease (AD). The total mean volumes (±SD) of the hippocampus are 5962.2 (±1025.3) and 7238.4

(±870.0) mm3 for AD and NC respectively.

https://doi.org/10.1371/journal.pone.0279574.g003
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AD and NC respectively. The hippocampal volume of the AD is 19.3% smaller than that of the

NC patients on average. To test the randomness of the patient datasets, similar probability

density distributions of Fig 3 were also obtained by using the R software on the patients’ data.

The results suggest that the Gaussian probability density functions are good for the likelihood

ratio observer in detecting Alzheimer’s disease using the hippocampal volumes of the ADNI

dataset.

Table 2 shows the mean volumes, standard deviations and detectability indexes of the total

medial temporal lobe (MTL) as well as its sub-regions. The volume of the MTL includes hippo-

campus, amygdala, entorhinal and para-hippocampal volumes. The detectability index or area

under the ROC curve for the total MTL volume in detecting Alzheimer’s disease is Az = 0.840

which is the highest among the individual sub-regions of the MTL. The detectability indexes

for the individual regions of hippocampus, amygdala, entorhinal and para-hippocampal are

Az = 0.827, 0.804, 0.786 and 0.734, respectively, as listed in Table 2. The fact that the detectabil-

ity index of the total hippocampus is the highest among the indexes of those individual compo-

nents of MTL is not surprising as the hippocampus atrophy is one of the diagnostic criteria for

Alzheimer’s disease [7]. However, the present finding that the total volume of the MTL per-

formed better than individual regions suggests that the AD involves not only the hippocampus

but a number of other related sub-regions of the MTL. Our detectability indexes suggest that

the para-hippocampal region (Az = 0.734) is the least affected among the four sub-regions of

the medial temporal lobe.

Fig 4 shows the joint probability density distributions of the medial temporal lobe (MTL)

volumes of the normal controls (NC) vs Alzheimer’s diseases (AD). Again, the probability den-

sity functions are constructed by using Eqs (4 and 5) as did for hippocampus volumes. The

mean volumes of NC and AD are 17944 ± 2053 mm3 and 14697 ± 2522 mm3, respectively. The

likelihood observer uses the joint probability density distributions to calculate the likelihood

ratio and determines if the patient should be classified as normal or Alzheimer’s disease. Simi-

lar joint probability density distributions can also be constructed for each of the individual

anatomical regions, i.e. amygdala, entorhinal and para-hippocampal, and each of these ana-

tomical regions can be used to classify the patents as normal or Alzheimer’s disease. Our

detectability analysis for each of the individual sub-regions suggests that the total volume of

the MTL is the best for our likelihood ratio observer in the detection of the AD as it has the

highest detectability index (Az = 0.840). The MIRIAD dataset [25] was used to test the perfor-

mances of the likelihood observers constructed by the total volumes of MTL and the hippo-

campus volumes alone for comparison.

Fig 5 shows the ROC curves for the MIRIAD dataset by using total MTL and hippocampal

volumes. The detectability indexes are calculated to be Az = 0.935 and 0.926 with an upper

bound of 0.993 and 0.985 by using the total MTL and hippocampal volumes, respectively. It

suggests that the MIRIAD dataset is a good clinical dataset for testing our likelihood ratio

observer. Both sensitivity and specificity of the likelihood ratio observer using hippocampus

alone are 82.6% whilst the sensitivity and specificity of the likelihood ratio observer using total

Table 2. Mean volumes, standard deviations and detectability index Az of various anatomical regions.

Mean AD SD AD Mean NC SD NC Az

MTL (mm3) 14697.2 2511.1 17943.8 2052.8 0.840

Hippocampus (mm3) 5962.1 1025.3 7238.4 870.0 0.826

Amygdala (mm3) 2340.9 548.1 2957.1 476.6 0.804

Entorhinal (mm3) 3036.7 813.7 3912.4 763.3 0.786

Para-hippocampal 3355.5 616.6 3834.9 518.2 0.734

https://doi.org/10.1371/journal.pone.0279574.t002
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volume of the MTL are 89.1% and 87.0% respectively. Our result shows that using total volume

of the MTL improves the performance by 5.45% in comparison with that of using the hippo-

campal volumes alone. An 85% of sensitivity and specificity can be achieved by the radiologists

using scores of visual grading on the volumes of MTL [6] without other clinical information

Fig 4. Probability density distributions of total volumes of the medial temporal lobe (MTL): Normal controls

(NC) vs Alzheimer’s disease (AD). The mean volumes (±SD) of NC and AD are 17944 (±2053) mm3 and 14697

(±2522) mm3, respectively.

https://doi.org/10.1371/journal.pone.0279574.g004

Fig 5. The ROC curves and their areas under the ROC curves for the total MTL and hippocampal volumes for the

detection of Alzheimer’s disease.

https://doi.org/10.1371/journal.pone.0279574.g005
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such as the MMSE scores. Our likelihood observer outperformed the best radiologists and our

likelihood observer makes decisions based on MTL volume alone without any input of other

patients’ information such as gender or age. Our likelihood ratio observer can, therefore, assist

those who do not have specialty knowledge of neuroradiology, which is especially useful for

healthcare professionals such as radiographers and nurses caring aging populations in regional

and remote areas.

Machine learning (ML) algorithms generally divide a large dataset into subsets for training,

validation and testing [28,29]. Our likelihood ratio observer uses the ADNI dataset in con-

structing the probability density functions which is analogous to the training of ML algorithms

or radiologists’ specialist training [20]. The ROC analysis and its detectability index Az are

analogous to the validation of ML algorithms using the same ADNI dataset. We used an inde-

pendent dataset, the MIRIAD dataset, for testing which should be better than that of using the

same dataset as that for training (overfitting). It is worth noting that the performance of any

machine learning algorithms or Alzheimer’s diagnosis in general is dependent on a number of

factors, such as the numbers of patients included in the study and whether or not other bio-

markers or variables are included in the diagnostic decision making. By including other bio-

markers or variables, the diagnostic accuracy may be improved, i.e. higher than that of using a

single biomarker such as the MTL volume. The numbers of patients used in a study can have a

major impact on the performance evaluation. The performance index or diagnostic accuracy

using smaller numbers of patients may or may not be higher but the performance results from

using large numbers of patients should be more robust and reliable [16]. The fact that we used

independent (no repeat images of the same patient) 263 AD and 263 NC patients in the con-

struction of the probability density functions for our likelihood ratio observer suggests that the

84% detectability of our likelihood ratio observer using the MTL volume calculated by a pub-

licly available software should be a robust and reliable performance index for any clinical set-

ting without knowing patient’s any other information such as gender or age. Our likelihood

ratio observer is equivalent to the best radiologists without any knowledge of neuroradiology.

Our likelihood observer needs only a patient’s T1 weighted image to make a diagnostic deci-

sion. This is especially useful for healthcare professionals such as radiographers and nurses

who don’t have specialist training and are caring aging populations in regional and remote

areas. Further work is to test the robustness of our likelihood observer in clinical practice

which is underway.

A comparison of our results with a recent work of Ledig et al [17] is worthwhile. Ledig et al

[17] used a MAPEM software for brain MR image segmentations and volume calculations.

They used both Random Forest and Support Vector Machine (SVM) algorithms for disease

classifications. Their highest achievable sensitivities and specificities (Random Forest, SVM)

are (83%, 86%) and (90%, 92%), respectively, using all features including gender, brain size

and age corrections. This contrasts with our likelihood ratio observer of 87% sensitivity and

89. 1% specificity using MTL volume only without gender, brain size and age corrections. The

overall accuracy of our likelihood ratio observer (88%) is equivalent to that of the Random

Forest (87%) and SVM (90%) [17]. Using the volumes of hippocampus, entorhinal and amyg-

dala and a linear discriminant analysis (LDA) classifier, the overall classification accuracies of

Ledig et al [17] are 78%, 80% and 78% with, and 75%, 73% and 75% without gender, brain size

and age corrections. This contrasts with our likelihood ratio observer of 82.6%, 80.4% and

78.6% without gender, brain size and age corrections. Our likelihood ratio observer performed

better than that of the LDA using individual anatomical volumes. More importantly, our result

is consistent with the fact that hippocampus is the most affected area in Alzheimer’s disease [7]

which should have the highest discriminant power for Alzheimer’s disease. It also suggests that

the correction for gender, brain size and age could improve the overall diagnostic accuracy by

PLOS ONE Computer assisted diagnosis of Alzheimer’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0279574 February 17, 2023 8 / 11

https://doi.org/10.1371/journal.pone.0279574


about 3%. One of the main limitations of this work is that gender, brain size and age correc-

tions are not included in the calculations of brain volumes. This limitation is also our strength

that the likelihood ratio observer is a simple yet highly accurate diagnostic tool to assist not

only radiologists but also allied health professionals such as radiographers and nurses caring

ageing populations. Further work is to include age, brain size and gender in the brain volume

calculations.

Conclusions

A computer assisted diagnostic tool is developed and tested for radiologists in their diagnosis

of Alzheimer’s disease. It makes diagnostic decision based on a patient’s medial temporal lobe

volume which can be calculated by a publicly available software using a T1 weighted MRI

images without knowledge of a patient’s any other information such as gender or age. It is a

simple and robust tool not only in assisting radiologists for their diagnosis of Alzheimer’s dis-

ease, but also for those healthcare professionals such as radiographers or nurses who have no

adequate knowledge of neuroradiology and care for aging populations in regional and remote

areas. The AD diagnosis by the likelihood ratio observer using hippocampal volume suggests

that the hippocampus is the most affected region of atrophy among the sub-regions of the

medial temporal lobe but the total volume atrophy of the MTL is more effective in AD diagno-

sis. There is an asymmetry of the hippocampal volumes that the left is smaller than right on

average for both AD and NC patients yet there is no evidence to suggest left/right asymmetri-

cal reductions of the hippocampal volumes between AD and NC patients. Further work is to

test the robustness of the likelihood ratio observer in a wider clinical practice for the diagnosis

of the Alzheimer’s disease.
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